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Abstract

This paper presents a non-dimensional design scheme for a magnetorheological (MR) mixed-mode
damper. Based on the Bingham plastic constitutive equation of the MR fluid, four non-dimensional design
parameters are defined: Bingham number, non-dimensional damping force, dynamic range and geometric
ratio. After investigating the design characteristics of each parameter, sequential design steps for the MR
damper are formulated. A single dof vibration model consisting of a spring and an MR damper is then
utilized to demonstrate the effectiveness of the proposed design methodology. By imposing equality
constraints on required damping force and dynamic range of the vibration model, the principal design
parameters, such as electrode length, can be determined from the non-dimensional analysis. Subsequently,
the MR damper is manufactured and its measured damping force characteristics are evaluated and
compared with the predicted results.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Electrorheological (ER) and magnetorheological (MR) fluids undergo reversible and rapid
changes in material characteristics when subjected to electric and magnetic fields, respectively.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

a; b; c coefficients of the non-dimensional
equation

Ap piston head area
cf fluid damping constant
cr rubber damping constant
csky gain of the sky-hook controller
f c control force
Fmr maximum damping force
Fv viscous damping force
h gap size
H magnetic field intensity
kr rubber spring constant
L gap length
m mass
p0 pressure gradient of the Bingham fluid
p0

n pressure gradient of the Newtonian fluid
p0

c the smallest pressure gradient between
stationary plates

P non-dimensional total pressure gradient
Q volumetric flow rate of Bingham flow
Qs volumetric flow rate of pure-shear
r piston head radius
T non-dimensional pressure gradient due

to yield shear stress
U relative velocity of two plates
vp piston velocity
V non-dimensional velocity
w gap width
xb displacement of the base
xm displacement of the mass
fc Bingham number
fD dynamic range
fF non-dimensional damping force
fr non-dimensional geometric parameter
Z zero-field viscosity of the Bingham fluid
ty yield shear stress of the Bingham fluid
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This change is primarily observed as a significant increase of the yield shear stress of the fluids and
can be continuously controlled by tuning the intensity of the applied field. Thus, ER or MR fluids
can be effectively utilized in vibration control of various dynamic systems including vehicle shock
absorbers, dampers, and mounts [1–4].
It is advantageous to develop a non-dimensional model that can predict the field-dependent

pressure drop or damping force in an ER or MR damper in order to determine appropriate design
parameters for favorable vibration control performance. So far, several non-dimensional models
have been developed by considering operational modes of ER or MR fluids, and used to analyze
pressure drop or damping force of ER or MR valves and/or dampers. Phillips [5] cast the Bingham
plastic flow equations for Poisieulle flow through a rectangular duct as a set of non-dimensional
groups and corresponding polynomial equations that determine the pressure gradient of ER fluid
under Poisieulle flow (flow mode), as well as mixed Poisieulle and Couette flow (mixed mode)
operations. Makris et al. [6] described a dimensional equation can be efficiently used to predict the
damping force of an ER damper with an annular bypass. Gavin et al. [7] and Gavin [8] presented
an approximation to the exact solution of a non-dimensional polynomial which has a complex
form, and showed that this approximation is useful in designing ER devices operating under flow
or mixed mode operation. Stanway et al. [1], Peel et al. [9] and Williams et al. [10] developed a non-
dimensional form that reduces the number of design parameters required to predict pressure drop
of the ER or MR device operated under flow or squeeze mode. Wereley and Pang [11] and Lindler
and Wereley [12] presented a set of non-dimensional groups characterizing equivalent viscous
damping constant of ER and MR dampers. This non-dimensionalization scheme is very useful for
the analysis of ER and MR damper operating under flow or mixed mode operation. Recently,
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Hong et al. [13] developed a non-dimensional analysis and design scheme for a flow mode ER
damper. This non-dimensional analysis is effective in predicting the field-dependent damping force
and dynamic range. Furthermore, the design specifications for the flow mode ER damper can be
efficiently set by considering the vibration control performance of an application system.
In the present work, a non-dimensional analysis scheme and non-dimensional design

methodology for an MR damper under mixed mode operation are developed. The non-
dimensional analysis model of the MR damper utilizes four non-dimensional parameters:
Bingham number, non-dimensional damping force, dynamic range, and non-dimensional
geometric parameter defined as the ratio of the piston (or plunger) radius to the annular gap
size. The non-dimensional scheme is analytically verified and the influence of the non-dimensional
parameters is also investigated. The proposed non-dimensional design scheme is assessed via an
MR isolation mount case study. The MR mount consists of a rubber element and an MR damper.
Design specifications of the maximum damping force and the dynamic field-controllable force
range are set by considering the sky-hook control performance of a single dof system. The
principal design parameters of the MR damper, to be incorporated into the system, are
determined on the basis of a non-dimensional design procedure. Finally, the MR damper is
manufactured and its field-dependent damping forces are experimentally evaluated to validate the
effectiveness of the proposed non-dimensional analysis and design methodology.
2. Non-dimensional analysis of MR damper

The schematic configuration of the proposed MR damper, operating in mixed mode, is shown
in Fig. 1(a). The MR damper consists of an MR fluid, plunger (or piston), annular gap,
electromagnet coil, flux guide, and housing. The MR fluid fills the annular gap between the
plunger and outer cylindrical housing. The cross-sectional area of the plunger is the effective
piston area. The electromagnet coil in the housing provides the magnetic field in the annular gap.
During relative motion between the plunger and housing, MR fluid flows through the annular
gap. Thus, the pressure drop due to flow resistance of MR fluid in the annular gap is induced. At
the same time, the MR damper has additional shear resistance due to relative motion between the
annular gap walls. Therefore, the proposed MR mount operates under both flow and shear
modes. If no magnetic field is applied, the MR damper produces a damping force caused only by
the fluid resistance associated with the viscosity of the MR fluid. However, if a certain level of
magnetic field is applied through the annular gap, the MR damper produces a controllable
damping force due to the yield stress of the MR fluid.
A set of non-dimensional parameters and a corresponding quintic polynomial [5] to determine

the pressure gradient of the mixed mode flow of Bingham fluid in a rectangular gap is

P3 � ð1þ 3TÞP2 þ 4T3 þ P2V þ
P2TV2

3ðP � 2TÞ
2
¼ 0, (1)

where

P ¼
p0

p0n
; T ¼

p0
c

2p0
n

; V ¼
Qs

Q
. (2)
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Fig. 1. The proposed MR mixed-mode damper; (a) configuration, (b) geometry.

S.R. Hong et al. / Journal of Sound and Vibration 288 (2005) 847–863850
In the above, the non-dimensional pressure gradient, P, is the ratio of the pressure gradient of
Bingham fluid, p0, to the pressure gradient of Newtonian fluid, p0n. In other words, the non-
dimensional parameter, P, represents the dynamic range, which is the ratio of the field-induced
pressure gradient to the zero-field pressure gradient at the same flow rate. The non-dimensional
yield shear stress, T, is the ratio of the smallest pressure gradient, p0c, that can exist when flow
occurs between two plates to the pressure gradient of Newtonian fluid, p0

n. Non-dimensional
velocity, V, is the ratio of the volumetric flow rate of pure-shear, Qs, to the volumetric flow rate of
Bingham flow, Q. When the non-dimensional velocity, V , approaches zero, Eq. (1) represents
solely flow mode operation of the damper.
On the other hand, the dimensional parameters of Eq. (2) are given by

p0n ¼
12QZ

wh3
; p0

c ¼
2ty

h
; Qs ¼

whU

2
. (3)

In the above, ty and Z are the field-dependent yield shear stress and post-yield plastic viscosity of
Bingham fluid, respectively. Also, w is the gap width, h is the gap size and U is the relative velocity
between the annular gap walls. If the ratio of the piston radius to the gap size is large, Eqs. (1)–(2),
which represent the mixed mode flow of a Bingham fluid in a rectangular gap, can be applied to
approximate the mixed mode flow through the annular gap [7]. Furthermore, the physically
meaningful root of the non-dimensional equation (1) can be represented by the following
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simplified form:

P ¼ a þ bT � cV . (4)

In order to minimize approximation error, a, b and c must be selected by considering an
appropriate range of non-dimensional pressure gradient as a function of the field-dependent yield
stress T. When, the parameter c is zero, Eq. (4) reduces to the result for the flow mode of
operation for a Bingham fluid. Furthermore, when the parameter b is zero, Eq. (4) represents
Newtonian flow in the absence of Bingham effect or zero yield stress. The parameters a, b, and c

for the mixed mode operation of a Bingham fluid have been chosen such that approximation error
to the exact solution of quintic polynomial (1) over the specific range of T is minimized. The
approximation result is shown in Fig. 2, and the parameters were chosen in this study to be a ¼ 1,
b ¼ 2:47 and c ¼ 1. It is observed that the approximate solution (4) shows favorable accuracy in
the considered range of T. Thus, Eq. (4) is used for the non-dimensional analysis undertaken in
this work.
From the MR damper geometry shown in Fig. 1(b), the volume flux, Q, and valve width, w, of

the MR damper can be expressed as

Q ¼ ApU ¼ �Apvp; Ap ¼ pr2, (5)

w ¼ 2pðr þ h=2Þ � 2pr. (6)

In the above, Ap is the piston head area (or cross-sectional area of the piston), r is the piston
radius and vpð¼ �UÞ is the piston velocity. By substituting Eqs. (2), (3), (5), (6) into Eq. (4), the
dynamic ratio, fD, defined by the ratio of the total damping force, Fmr, to the viscous damping
force, Fv, can be expressed as

fD ¼
Fmr

Fv

¼
a þ bT � cV

a � cV
¼ 1þ

b

6

fc

afr þ c
, (7)
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Fig. 2. Approximation of exact solution of the non-dimensional equation.
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where

fc ¼
tyh

Zvp

; fr ¼
r

h
. (8)

In the above, the non-dimensional parameter fc is the well-known Bingham number and
represents the ratio of the dynamic yield shear stress to the viscous shear stress [11,14]. In
addition, fc shows the influence of the magnetic field on the damping force of the MR damper.
The non-dimensional parameter fr represents the geometric ratio characterized by the piston
radius r and gap h. The geometric ratio is proportional to the hydraulic amplification or the ratio
of the piston area to the annular gap area, fr / Ap=wh. On the other hand, the damping force
ðFmrÞ of the MR damper is given by

Fmr ¼ p0LAp, (9)

where L is the length of the effective region of the annular gap. Now, substituting Eqs. (2)–(6), (8)
into Eq. (9) yields the non-dimensional damping force, fF , represented by the non-dimensional
parameters fc and fr as follows:

fF ¼ af3
r þ

b

6
fc þ c

� �
f2

r . (10)

Thus, the damping force of the MR damper can be expressed by

Fmr ¼ ð6pZvpLÞfF . (11)

It is observed from Eq. (11) that the damping force Fmr can be directly scaled by the gap length L.
When the Bingham number fc is zero, Eq. (10) reduces the equation of the damping force for the
case of Newtonian flow.
The relationship between the dynamic ratio fD and the non-dimensional geometric parameter

fr is illustrated in Fig. 3(a) as the Bingham number fc is varied. As the Bingham number fc

increases, the dynamic range fD of the MR damper also increases. The Bingham number fc is
large when the piston velocity vp is low, or the yield shear stress ty is high. Thus, a large value of
fc implies that the MR damper operates close to the yield stress of the MR fluid. For a given
Bingham number, as the non-dimensional geometric parameter fr increases, the dynamic ratio fD

decreases. Thus, small piston radius r or large gap size h are preferred to maximize dynamic ratio
fD. Furthermore, the gap size h has a great influence on both non-dimensional parameters fc and
fr. Enlarging the gap size h increases the Bingham number fc and decreases the non-dimensional
geometric parameter fr. Thus, dynamic range fD can be maximized by increasing the gap size h,
although h is limited due to field considerations.
The relationship between the non-dimensional damping force fF and the non-dimensional

geometric parameter fr is presented in Fig. 3(b) as the Bingham number, fc, is varied. The non-
dimensional damping force fF increases as both the Bingham number, fc, and the non-
dimensional geometric parameter, fr, increase. This implies that high-yield shear stress, ty, large
piston radius, r, and small gap size, h, are all required to exert high damping force using a damper.
On the other hand, large piston radius, r, and small gap size, h, will reduce the dynamic range, fD,
and may deteriorate vibration control performance of the overall MR damper system.
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Fig. 3. Analytical verification of the non-dimensional equations; (a) fD � fr relation, (b) fF � fr relation.
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3. Design of MR damper

Using the non-dimensional forms and parameters of Eqs. (7), (8), (10), (11), effective design
procedures for the MR devices such as dampers and mounts can be established to meet the
imposed design requirements. In general, the dynamic range, fD, and maximum damping force,
Fmr, are imposed as the most important design requirements in MR dampers. Therefore, in order
to meet the desired dynamic range and maximum damping force, the appropriate design procedure
of MR damper should be developed. Then, the design steps can be summarized as follows:
(i)
 Specify the dynamic range fDð¼ Fmr=FvÞ: given design requirement or constraint.

(ii)
 Specify the maximum damping force Fmr at the piston velocity vp: given design requirement

or constraint.

(iii)
 Measure the Bingham-plastic properties of the employed MR fluid ðty; ZÞ.

(iv)
 Calculate the Bingham number fcð¼ tyh=ZvpÞ using Eq. (8) by the substitution of ty and Z of

step (iii), and considering appropriate gap size h.
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(v)
 Find the geometric parameter fr which meets the desired dynamic range fD of step (i) using
Eq. (7) by the substitution of h of step (iv). In this step, the piston head radius rð¼ frhÞ is
achieved.
(vi)
 Find the non-dimensional force fF using Eq. (10) by the substitution of f	
c of step (iv) and fr

of step (v).

(vii)
 Calculate the electrode length L using Eq. (11) by the substitution of Z of step (iii) and Fmr at

vp of step (ii).
In order to demonstrate the effectiveness of the proposed design procedure, a MR mount is
considered and its schematic configuration is presented in Fig. 4. The MR mount was constructed
by incorporating both a rubber element and an MR damper. The passive mount utilizing the
rubber elements has been widely adopted to support a static load and to isolate a dynamic load
over high and post-resonance frequency range. The top end of the rubber element has fixture with
which to support the vibrating mass and is connected to the piston of the MR damper. The
bottom plate of the rubber element is attached to the MR damper housing.
First, the maximum damping force Fmr, the piston velocity, vp, and the dynamic ratio, fD, of

steps (i) and (ii) are specified by considering the vibration model shown in Fig. 5. The governing
equation of the vibration model is obtained by

m €xðtÞ ¼ �krðxmðtÞ � xbðtÞÞ � crð _xmðtÞ � _xbðtÞÞ � cf ð _xmðtÞ � _xbðtÞÞ � f cðtÞ. (12)

In the above, m is the mass supported by the MR mount. kr and cr are the spring and damping
constant of the rubber element, respectively. cf is the damping exerted by the flow resistance of the
MR damper in the absence of magnetic field, and f cðtÞ is the damping force which can be
controlled by the intensity of the magnetic field. xmðtÞ is the displacement of the mass, and xbðtÞ is
the displacement of the base excitation. The parameters of the mass and rubber element, adopted
for this test model, are listed as follows: m ¼ 12 kg, cr ¼ 140N s=m, and kr ¼ 106 kN=m.
Prior to determining the design parameters, uncontrolled responses were analyzed. The

amplitude of the sinusoidal excitation velocity _xb was set to be 0.01m/s. The mass velocity _xb and
the piston velocity vpð¼ _xm � _xbÞ are presented in Fig. 6(a) and (b). The maximum mass velocity is
limited to the 0.07m/s by setting the viscous damping constant cf of 20N s/m. Fig. 6(c) shows the
MR Damper

Rubber Element 

Air Vent 

Electro-magnet Coil 

Housing

MR Fluid

Flux Guide

Piston

Annular Gap

Magnetic Field 

Fig. 4. Schematic configuration of the MR mount.
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viscous damping force obtained from the product of the damping constant and piston velocity.
The maximum viscous damping force corresponding to the maximum piston velocity of 0.07m/s
was 1.54N. As a next step, vibration control performance of the MR mount system was
investigated. The sky-hook controller [15], which is a simple and effective control algorithm for
the vibration attenuation, was adopted in this work. The control input which directly represents
controllable damping force is given by

f cðtÞ ¼ csky _xmðtÞ, (13)

where csky is the constant gain for the sky-hook controller. This gain physically implies damping.
The damping force should be applied according to the semi-active condition as follows [15]:

f cðtÞ ¼
f cðtÞ for _xmð _xm � _xbÞ40;

0 for _xmð _xm � _xbÞp0:

"
(14)

This condition indicates that the actuating of the controller f cðtÞ only assures the increment of
energy dissipation of the stable system. Fig. 7(a) compares the mass velocity between the
controlled and uncontrolled cases. It is observed that the velocity near the resonant frequency is
effectively attenuated by activating the MR mount. The control input magnitude is presented in
Fig. 7(b), and the maximum value of the control force was 10.7N. The design specifications of
steps (i, ii); dynamic ratio fD, maximum damping force Fmr, and piston velocity vp, were
determined by investigating control performance of the MR mount system. In this work, the
maximum damping force was chosen to be Fmr ¼ 15:4N by considering a safety factor and
the dynamic ratio was chosen to be fD ¼ 10. These values were used for the design of the MR
damper.
The field-dependent yield shear stress of the MR fluid (MRF-132LD, Lord Corporation) was

experimentally determined to be tyðHÞ ¼ 0:13H1:13 kPa. Here, the unit of magnetic field H is
kA/m. The post-yield plastic viscosity was also experimentally evaluated to be Z ¼ 0:59Pa s. The
upper limit of the yield stress of the MR fluid was 4 kPa for a magnetic field of H ¼ 20:7kA=m.
From step (iv), the Bingham number at H ¼ 20:7kA=m is fc ¼ 145:3. It is noted that the gap size
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has been chosen to be h ¼ 1:5mm by past experience. Fig. 8(a) shows the dynamic range with
respect to the geometric parameter at the Bingham number, fc ¼ 145:3. To meet the desired
dynamic ratio fD ¼ 10, the geometric parameter was required to be fr ¼ 5:6. Then, the piston
head radius was set to be r ¼ 8:5mm according to step (v). Fig. 8(b) presents the relationship
between the non-dimensional damping force fF and the geometric parameter fr for a Bingham
number fc ¼ 145:3. The non-dimensional force at the non-dimensional geometric parameter fr ¼

5:6 was found to be fF ¼ 2134. Finally, the gap length was determined to be L ¼ 10mm
according to steps (vi, vii).
4. Design assessment

Based on the design parameters (L, r, h) determined by the above non-dimensional design
scheme, a mixed mode-type MR damper, pictured in Fig. 9, was manufactured. To measure the
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field-dependent damping force of the MR damper, the experimental setup presented in Fig. 10 was
used. The MR damper is placed between the load cell and an electromagnetic shaker. The
accelerometer measures the acceleration of the shaker table, and the signal generated from this
accelerometer is fed back to the controller that regulates excitation velocity. When the shaker
table moves up and down by a command signal generated from the shaker controller, the MR
damper produces a damping force that is measured by the load cell. The excitation velocity signal
is measured by using an accelerometer and the charge amplifier which has an integrator. The force
and velocity signals are saved in a micro-processor via an A/D (analog to digital) converter. The
current is applied to the MR damper via a D/A (digital to analog) converter and a current
amplifier. The sinusoidal excitation velocity amplitude and frequency were selected as 0.07m/s
and 15Hz, respectively.
Fig. 11 compares the predicted and measured values of the dynamic range fD and non-

dimensional damping force fF of the MR damper designed and manufactured in this study. The
effect of the magnetic field intensity is also presented in Fig. 10. It is observed that the measured
and predicted values correlate well demonstrating the effectiveness of the proposed non-
dimensional scheme. Fig. 12(a) shows the time responses of predicted and measured damping
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forces under various magnetic-field intensities. The damping force versus piston velocity is also
presented in Fig. 12(b). The predicted damping forces were obtained by Eq. (10). It is observed
that the predicted field-dependent damping force agrees well with the measured force in the post-
yield velocity regions. Field-dependent damping force characteristics under various excitation
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frequencies and amplitudes are presented in Fig. 13. The measured damping forces at higher
excitation frequencies to Fig. 12 are shown in Fig. 13(a) and (b). As the excitation frequency
increases, the slope of low-velocity hysteresis loop decreases and magnitude of inertia loop at
velocity extremities increases. The dynamic behaviors of damping force are mainly due to the
compliance and fluid inertia effects. On the other hand, Fig. 13(c) and (d) shows the damping
force behaviors at lower excitation velocity amplitudes to Fig. 13(a). It is also observed that the
low-velocity hysteresis loop and high-velocity inertia loop depend on the excitation velocity
amplitudes. But the overall behavior of the damping forces under various excitation conditions in
Fig. 13 agrees well with the predictions obtained by using the proposed model in this study. Thus,
the effectiveness of the non-dimensional design procedure for the MR damper operated under the
mixed mode operation has been proved. Most of previous studies on non-dimensionalization of
ER or MR devices have been limited to analysis of damping force characteristics only. By using
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Fig. 13. Field-dependent damping forces under various excitation conditions; (a) excitation: 0:07m=s, 20Hz, (b)

excitation: 0:07m=s, 30Hz, (c) excitation: 0:03m=s, 20Hz and (d) excitation: 0:05m=s, 20Hz.
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the proposed non-dimensional form, both damping force level and dynamic range of the vibration
control system can be effectively analyzed.
5. Conclusion

In this study, a non-dimensional design scheme for a MR mixed-mode damper was developed.
On the basis of the Bingham plastic constitutive equation of the MR fluid, four non-dimensional
design parameters were defined: Bingham number, damping force, dynamic range and geometric
ratio (or hydraulic amplification). After investigating design characteristics of each parameter,
sequential design steps for the MR damper were formulated and a single dof vibration model
consisting of the spring and the MR damper was then established in order to demonstrate the
effectiveness of the proposed design methodology. By comparing measured and predicted
responses, it was demonstrated that the principal design parameters of MR devices, such as
length, width and depth of the MR valve, can be easily and effectively determined from the non-
dimensional analysis by specifying a set of physical design requirements, such as the maximum
damping force. It is finally remarked that the proposed design methodology can be applied to the
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design of various types of ER or MR fluid-based vibration isolators such as shock absorbers and
mounts without any modification.
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